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Unusual Temperature Dependence of Proton Transfer 3. Classical Kramers’ Theory versus
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Previously, we measured the proton-transfer rate constant from strong photoacids to several solvents such as
alcohols and water as a function of temperature. We found an unusual temperature dependence: at high
temperature the rate constant is almost temperature independent whereas at low temperature the rate constant
exhibits a strong temperature dependence and follows the inverse of the dielectric relaxation time of the
particular solvent. We used the LandaZener curve-crossing formulation to calculate the proton-transfer

rate constant. We explained the temperature dependence as a continuous transition from nonadiabatic (high-
temperature) to solvent-controlled (low-temperature) limits. In this study, we used the classical Kramers’
theory in the medium and strong-damping limits to calculate the transmission coefficient and rate constant.
We found good correspondence between the experimental and calculated proton-transfer rate constant at all
temperatures using both models. In both models, the dynamical parameter used to calculate the temperature
dependence of the proton-transfer rate constant is the dielectric relaxation time of the particular solvent.

Introduction rate at high and low temperatures. In more recent papers, we
explained the temperature dependence of the rate constant for
proton transfer to the protic solvent as a continuous transition
from nonadiabatic (high-temperature) to solvent-controlled (low-
temperature) proton transfer. This phenomenon can be described
by the LandawZener curve-crossing equatidd? for the
Aoroton-transfer rate constant.

The development of the theory for the solution-phase proton-

In their excited state, photoacids are stronger acids than in
their ground state. The excitation of these compounds in a
solution of protic solvents enables the study of the dynamics
of the proton-transfer reaction from acids to the solvVeft.

In previous papers,°we described our experimental results
of an unusual temperature dependence of excited-state proto

transfer from a super photoacid (5,8-dicyano-2-naphthol, DCN2) transfer reaction is along the lines of electron-transfer theory.

to several monols, diols, and a glycero_l. At relatively high It was initiated by Marcu$14as well as Dogonadze, Kuznetzov,
temperatures, the rate of proton transfer is almost temperature-

" —19 i
independent whereas at relatively low temperatures the rateUIStrUp’ and co-workef5*% and then extended by Borgis and

e Hynes?%-22 Cukier2324 and Voth?52% These theories suggest
exhibits great temperature dependence and the rate consta . _— :
e - . . T at, when a potential energy barrier is present in the proton-
value is similar to the inverse of the dielectric relaxation time.

We also measured the temperature dependence of the Iorc)torr]eactlon coordinate, the reaction pathway involves tunneling

transfer from two photoacids to water. We chose two photoacids through the barrier as oppo;ed to passage over the.barner. The
that differ in their acidity in the excited stateKfy and proton- proton transfer can be descrlbed as quantum tulnnellng between
transfer rate constants. The proton-transfe'r rate condtant two wells formed by two interacting electronic states. The

of the strong photoacid (2-naphthol-6,8-disulfonate, 2N68DS, trz_msfer of the_proton, from one well to the other, is associated
. : 0 w1 with a change in the electronic state of the system. The crossover
pK* = 0.4) at room temperature is 2.3 100 sL Its

temperature dependence in water has similar behavior to thathtween the electronic states can occur only when the proton

found for DCN2 for several alcohols. At relatively high turgwels th;pug? Te gamzer. L7) th 112 id
temperatures, the rate of proton transfer is almost temperature- onventional L-andadzener ( ). eory2 provi es an
independent whereas at relatively low temperatures the rateagcurate des_crlptlon of the. Process in th_e absence_of |n_teract|on
exhibits great temperature dependetgg.at room temperature, W't_h _the environment. It 1S a_ppllcable |f_the motion, |n28the
of the weak photoacid (2-naphthol, 2N<h= 2.7) is only 2x vicinity of th? crossing point, Is ne_arly unlforr_n (ballisti):

1@ s™1 Its temperature dependence exhibits different behavior. The interaction of the particle with the environment causes

The activation energy of the proton-transfer process is about cpm_pllcgtlons. The curve-crossing pTOb'im in the presence of
12 kJ/mol at high temperatures. At low temperatufies, 300 dissipation has been studied extensiily’ Expressions for

K, the activation energy increases and reach€ = 20 kJ/ the transition rate of various physical limits have been derived.
mol at 250 K. When the couplingyV, between the diabatic terms is the
In our earlier papers® we proposed a simple stepwise model smqlle;t parameter C?f the, system, the dynamics in .the cros;ing
to describe and calculate the temperature dependence of th&€9ion in this nonadiabatic limit is fast, the tunneling rate is
proton transfer to the solvent. The model accounts for the large (€ rate-limiting step, and the reaction rate is given by the Fermi

difference in the temperature dependence and the proton-transfegc’lden rule expression. ] ] )
When the coupling between the diabatic states is larger than

* Corresponding author. E-mail: huppert@tulip.tau.ac.il. Fax/phone: KeT,the a_diabatic representation Of_the C_OUp|ed p_otential energy
972-3-6407012. surfaces is adequate, the upper adiabatic potential surface plays
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a negligible role, and the rate expression is given by the standardthe product well. In the classical limit, the escape process is
transition-state theory (TST) equation. thermally activated, and the rate can be written as a product of

Another physical limit is realized wheW =< ksT and the
interaction with the environment is strong enough. The particle
spends a “long” time in the crossing-point region. The rate is
determined in both the adiabatic and solvent-controlled limits
by the dynamics on the lower adiabatic potential surface. The
formulation of the problem and the definition of the physical
regimes go back to Kramers’ theory. In the solvent-controlled

limit, the rate is inversely proportional to the solvent relaxation t

time (friction) and is independent of the couplikg

In this paper, we use two models to calculate the rate of
proton transfer as a function of temperature. We compare the
calculation results with the previously published experimental
data. The first model is based on classical Kramers’ tiioty
and its strong relation to solvent friction. The second model is
based on the LandatZener curve-crossing formulation and was
successfully utilized previously to explain the experimental
results.

As we shall show, Kramers’ theory in the intermediate and
strong-damping limit can explain the unusual temperature
dependence of excited-state proton-transfer reactions. In the cas
of the adiabatic or the solvent-controlled limits, the upper
adiabatic potential surface plays a negligible role and hence can
be treated by Kramers’ theory. In Kramers’ theory, the dissipa-
tive medium (the solvent) is modeled by a thermal bath of
harmonic oscillators bilinearly coupled to the system. The
strength of the coupling to the bath is usually represented by a
damping parametey that can be related to the dielectric
relaxation of the solvent.

Modeling

A. Classical Kramers’ Theory. The standard model for
studying reaction rates in solution and general radiationless
transitions consists of two crossing diabatic parabolic terms.

the Arrhenius factor and an attempt frequenoy®

r (4)

[0 + _ @Yo +
o exp(=pAG") an exp(=pAG")
where P is the dissipative transmission factogo is the
characteristic frequency of the diabatic potentials, AGf is
he activation energy. As previously mentioned, we shall limit
ourselves to the spatial diffusion limit {s independent of time).
The transmission factor in this case is determined by the
dynamics in the vicinity of the barrier top.
In the limit of small nonadiabatic couplingg{/ < 1), the

lower adiabatic potential surfact<(qg), can be modeled as a
cusped double-well potentidl.(q):

Ua) = ImU_(@ = Jodl —6)°  (5)
Calef and Wolyne% (CW) suggested using for the transmis-
sion factor for the symmetric cusped double-well potential the
nctional form appropriate for the parabolic barrier. The
effective barrier frequencyyer, is scaled by the reduced barrier
height: wer = (TBAG)Y2w . Their expression has the form

PSY = (270) Y4(1 + 270)"? — 1] (6)

where

0 = 2BAG.(wyy) )
andAG:- is the barrier height in the case of a symmetric cusped
double-well potential surface.

Rips and Polla® usedy = w¢?r., 7. being the longitudinal
dielectric relaxation timer, = (e./es)tp. 7p IS the solvent

Radiationless transitions between the terms are induced by thedielectric relaxation time, ane., andes are the high- and low-

nonadiabatic coupliny. The environment is described in terms
of a bath of harmonic oscillators bilinearly coupled to the
reaction coordinaté!

The dynamics on the lower adiabatic surface is governed by
the Hamiltonian of a particle on a potential surface, coupled to
the bath, and can be equivalently described in terms of a
generalized Langevin equation (GLE):

du_(q)

d

U-(q) is the lower adiabatic potential surface, agds the
system reaction coordinate. The Gaussian stochastic &ige,

has a vanishing mean value and is related to the time-dependen
friction function, y(t), via the fluctuation dissipation theorem:

[EOET)= (UB)y(t— 1) )

+ [l -t at) =E0) (@)

with 8 = 1/kgT.

In this paper, we follow the derivation of Rips and Polfik,
Rips3” and Starobinet et 4k1n the strong-damping limit, ohmic
dissipation holds and is characterized by the friction function

y(®) = 2yo(t) 3

In this case,y(s) = y is the damping constant (Markovian
process).

The reaction rate is determined by the thermally activated
classical escape rate of the particle from the reactant well to

frequency dielectric constants, respectively.
In the weak-damping limit, this expression reduces to

imPSY ~ 1 — (270) Y2=1— (4npAG.) Y(ylwy) (8)
0—00
The transmission factor is thus linear in the damping. In the
strong-damping limit, the CW expression reduces to Kramers’
exact result:
limPSY = (wo/2)V41 — 70/2] (9)
g0
We found experimentalf? that the proton-transfer rate
constant from a photoacid to solvent at low temperatures scales
ﬁicely with the dielectric relaxation time g1 = 7p/b, where
b is an empirical factor determined by the fit of the experimental
data and was found to be in the range-4 > 1 for various
alcohols and water. Thus, the solvent relaxation time 7p/b
appropriate for proton-transfer reactionzis < rs < 7p.
In this study, we used the following rate constant expression
to fit the experimental proton-transfer rate constant as a function
of temperature:

Kpr = kTSTPS " (10)
and
[0y .
kTST — EO —AG*/RT (11)
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TABLE 1: Fitting Parameters for the Two Calculation
Models

wo \Y
[s? [cm™1°
1.3x 101t 2

AG* TDZQBK
[kd/moll*  bd  [ps]

25 2 50
2N/H0 0.9x 10" 1 12 2 8
2N68DS/HO  1.8x 104 2 2.5 2 8

2wy is calculated from the high-temperature limit of the experi-
mental rate constarker, and eq 11° Evaluated from the experimental
high-temperature rate constahfActivation energy obtained by the best
fit to the experimental datd. Empirical factor used in the determination
of the proton-transfer ratéDielectric relaxation time at room tem-
perature.

DCN2/MeOH

preexponential factorgy, is relatively low compared to the
common values used in theoretical considerations and deriva-
tions. In his paper, Rigéused the ultrafast inertial component
of the solvation time-correlation function. For water, he used
oy = 4 x 108 s71, and for methanole) = 1.5 x 1013 s7%

The preexponential factors we find in our studies are closer to
the values ofp at room temperature than to the ultrafast inertial
solvation component. The much smaller preexponential values
probably arise from the long-range solvent rearrangements
taking place in proton-transfer reactions. The reaction can be
described schematically:

A*H"'SB —A _*"'HSE

The reactant is an intermolecular hydrogen-bonded complex
between the photoacid, AHand a solvent molecule gSthat
serves as a base, characterized by a hydrogen bond to the
photoacid and other solvent molecules. It was found that this
hydrogen bond in protic solvents shifts the fluorescence band

of the photoacid to the red by about 1000 @if? In water,
this specific water molecule,gShas three hydrogen bonds to
three water molecules. To form the product;--AISE;, in
water, one hydrogen bond of $ a water molecule must break.
4 s Thus, relatively long-range reorganization of the hydrogen bond
A network takes place upon proton transfer to the solvent. This
- complex rearrangement, to accommodate the product, is prob-
ably the reason for a slow solvent-generalized configurational
motion that corresponds to a low-frequency component in the
solvent dielectric spectrum. Its time constant is close to the slow
component of the dielectric relaxation time. The activation
energy,AG*, is determined from the high-temperature limit of
the slope of the Arrhenius plot of the proton-transfer rate*
at the high-temperature limit for DCN2 in methanol and ethanol,
as well as for other alcohols, is relatively lowG* = 2.5 kJ/
mol. Approximately similar values oAG* are also found for
Figure 1a shows an Arrhenius plot of kat versus 1T of 2N68DS in water.
the proton-transfer rate constant from DCN2 to methanol. The  Figure 2a shows the fit of the experimental datekdg)(versus
slope at the high-temperature limit is small whereas at low 1/T (solid circles) for the proton-transfer rate constant from
temperature the slope is greater. We also plot the inverse of theDCN2 to methanol, with the calculated rate constant using eq
solvent relaxation timegs~?, for methanol (solid line), which 10. P(c:W is given by eqs 6 and 7. Figure 2b shows the
scales with the dielectric relaxation time, to show the good match experimental data and fit for 2N in water using the dielectric
of the proton-transfer rate constant at low temperatures with relaxation data of water and the relatively larger activation
7p~ L. Figure 1b shows an Arrhenius plot of the proton-transfer energy,AG* = 12 kJ/mol, which we found for 2N in water.
rate constant from 2N and 2N68DS to water. As can be seen, Table 1 gives the relevant parameters of the calculation.
for 2N the activation energy is also large at high temperatures. B. Landau—Zener Curve-Crossing Formulation. Borgis
The activation energy at temperatures close to the boiling pointand Hyne&-22 derived an expression for the proton-transfer
of water is 12 kJ/mol, and at250 K (super-cooled water), it  rate constantk. They wrote an expression f&rin a transition-
is close to 20 kJ/mol.wg is determined from the high-  state theory formk is expressed as the average one-way flux
temperature limit. For 2N68DS in water, we filg) = 1.8 x along the solvent coordinate through the crossing p8&intf
10t s71, for 2N in water,wp ~ 1 x 10t s7%, and for DCN2 in the two free-energy surfaces, with the inclusion of a transmission
methanolwy = 1.3 x 10t s71. The value of the rate constant coefficient, «, giving the probability of a successful curve

19 4 a

18

17 +———
26 28

— T T T T T T T T
3.0 32 34 36 38
1000 / T [K™]
Figure 1. Arrhenius plot of Inker versus 1T of the proton-transfer
rate constant (a) DCN2 in methand@)along withts = to/b (—). (b)
2N (2a) and 2N68DS ©) in water.

We obtainwg from the high-temperature fit of the experimen-
tal data to eq 11.
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Figure 2. Use of Kramer's theory-f) to fit the experimental data,
(full circles) for the proton-transfer rate constant, of (a) DCN2 to
methanol and (b) 2N to water.

4.4

crossing:

k=39(93(S— SH(S SR (12)
where S is the generalized solvent coordinag,the solvent
velocity, and ®(S), the step function. The brackets denote
averaging over the classical solvent distribution normalized by
the partition function of the solvent.

The general LandatiZener (LZ) transmission coefficient,
is given by

k=[1—",expg)] "1 — exp(g)] (13)
where
_ 27|V _ 27|V
9= RAFS ™ hkS (14)

Cohen et al.

coefficient,k, includes multiple passage effects on the transition
probability. V is the coupling matrix element between the
reactant and the product, aidr is the slope difference of the
diabatic potentials of mean force at the crossing paiit,=

ks, whereks is the parabolic potential surface force constant.
Wheng < 1, one obtains the nonadiabatic limit result

k=29 (15)
leading to
_ 27,0 B\ 5 N
o = Fivi{ghe) “ewconciy  ao
in which AG* is the Marcus activation free energy
AGE, = 4iES(ES + AG) (17)

The adiabacity parametgr(see eq 14) depends on the potential
surfaces’ curvatureAF, the coupling,V|?, and the velocity in
the vicinity of crossingS |V|? is independent of temperature.
The solvent velocityS, however, depends strongly on temper-
ature. In our previous papers, we suggested $iatrelated to
the slow components of the solvent relaxation. On the basis of
the experimental data, we infer th@t= bltp, whererp is the
solvent dielectric relaxation time arlis an empirical factor,
dependent on the specific protic solvent, and its value is between
1 and 4.

In the adiabatic limitV > kgT, ¥ &~ 1, the adiabatic rate
expression is

Kap = (0d27) exP(‘ﬁAGXD)

wherews is the solvent high frequency amkiGh, = AG}, —
V is the free energy of activation.

Another physical limit is realized wheX < ksT and the
interaction with the environment is strong enough. In this
solvent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and independent of the coupling
V. Rips and Jortné? derived an expression for the resonant
(AGF = 0) electron-transfer rate in the solvent-controlled limit.

(18)

eT_ 1
T=
T

E.\12
(%n) exp(-pAGyA) (19)

For the nonresonance cases, the prefactor in the rate expression
(eq 19) changes only by about 20%.

The preexponent depends on the solvent’s dynamical proper-
ties. At low temperatures, we found that the preexponential
factor in the solvent-controlled limit is related to the slowest
component of the dielectric relaxation time.We also found that
the temperature dependence of the proton transfer can be
explained as a continuous transition from the nonadiabatic limit
at high temperature to the solvent-controlled limit at low
temperature.

A number of attempts have been made to bridge these
physical limits. Zusmaf? derived an expression for the rate,
bridging the nonadiabatic limit and the solvent-controlled limit.
Rips and Jortner have used a simple physical argument to obtain
a rate expression that bridges all three lid#3hey assumed
that the crossover could be described in terms of a single
dimensionless parameter, the ratio of the mean free path and
the root-mean-square displacement of the reaction coordinate.

In our previous papers,1° we used the mean first-passage

is the adiabacity parameter. The expression for the transmissionexpression to fit the experimental results. This expression
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bridges the nonadiabatic limit and the solvent-controlled limit: In Figure 3, we compare the fit to the experimental proton-

transfer rate constarkpt, with the two methods of calculation.

_ kna(Tks(T) The Landat-Zener calculation results were taken from our
D = Kna(T) + ks(T) (20) previous studie4®4” Figure 3a shows the Arrhenius plot of In
A ket versus 1T of DCN2 in methanol. We display the proton-
wherekpr is the overall rate ankiya andksc are given by eqs transfer rate constant extracted from the experimental data (dots),

16 and 19. the calculation based on Kramers’ theory (solid line), and the
Numerical Calculation of the Proton-Transfer Rate. For calculation using the LandaiZener curve-crossing formulation
the numerical calculation of the proton-transfer rate constant (dashed line). Figure 3b shows the Arrhenius plot of the proton-
as a function Of temperature, we previous|y used two Crossing transfer rate constant Of 2-naphth0|-6,8-su|f0na’[e to water. The
parabolic potential surfaces representing the free energy of theSymbols of the experimental data and the two model calculations
reactant and product along the solvent coordinate. The numerical@r® the same as in Figure 3a. Figure 3c shows the Arrhenius

calculation is based on the diffusive propagation of the solvent- Plot of the experimental and calculatkg of 2N to water. As
generalized coordinate from the equilibrium position of the Seen in Figure 3, both methods of calculation yield a good fit

reactant well to the crossing point. We solve the Debye
Smoluchowski equation (DSE) for the specific problem. The
probability density functionp(S, t), to find a solvent configu-
rationSalong the generalized solvent coordinate at tirabeys
the DSE94344

PESY _ 13 -pus I pus
o~ Die 8866 p(sS t)

(21)

whereD is a diffusion constant and(S) is the potential surface.

In our calculations, we use@s = 0.3 eV for various
photoacids either in alcohols or water. The calculation’s initial
condition is a thermal equilibrium of the probability density
function, p(S), of the solvent coordinate of the reactant and is
given by a Gaussian distribution centered at the minimum of
the reactant well.

The diffusion constanD, is related to the dielectric relaxation
time, 7p, and the widths of the Gaussian initial distributitn,

D = [FM2rs, where[F[lis the mean square displacement and
s = 1p/b, whereb is an empirical factor. FOEs = 0.3 eV,
= 0.16 at room temperature.

The activation energyAG*, to cross between the reactant
well and the product well is determined from the experimental

to the experimental results (lker versus 1TI) of three
compounds in two different solvents, which differ in their
dielectric relaxation properties. The fitting parameters for both
calculation methods are given in Table 1.

Discussion

In this section, we compare the two methods used in this
paper to calculate the proton-transfer rate constani,as a
function of temperature. Experimentally, we found that the
proton transfer rate from strong photoacids to solvent exhibits
an unusual temperature dependence. At high temperakgres,
is almost temperature-independent whereas at low temperatures
it exhibits a strong temperature dependence. At the low-
temperature limitket scales with the long component of the
dielectric relaxation timegp, of the particular solvent.

Previously, we explained the temperature dependenkgrof
as a continuous transition from the nonadiabatic limit (the high-
temperature limit) to the solvent-controlled limit (the low
temperature limit). We successfully used the LandZaner
(LZ) curve-crossing formulation to calculate the proton-transfer
rate constant at all temperatures.

Three parameters determine the LZ transmission coefficient,

activation energy measured at high temperatures (the nonadia> (€as 13 and 14): the coupling matrix elemeéntihe curvature

batic limit). For 2N68DS in water and DCN2 in methanol, we
usedAG* ~ 2.5 kJ/mol. The position of the activation barrier
is determined byAG* = U(S") andSf = 0.21 . For the weak
photoacid 2-naphthol (2N), we usefiG* ~ 12 kJ/mol and
calculatedS" = 0.37.

The next step in the calculation is based upon solving the —

DSE of a single parabolic potential surface with the relevant
initial and boundary conditions. To solve it, we used a
modification of the user-friendly graphic program SSDP (version
2.61) of Krissinel and Agmof® The modification is based on
the Landau-Zener transmission coefficient(eq 13) in the sink

difference of the diabatic potential surfaces at the crossing point,
AF, and the solvent velocity at the crossing pofit, We used
Sf = bltp. From the preexponential factor at the high-
temperature limit, we determine the nonadiabatic coupling
matrix element (eq 16). For a symmetric reaction whi@
0, AF can be calculated from the solvent reorganization
energy AF = 2Eg, but it is not easy to calculates for proton-
transfer reactions. For the proton-transfer rate constant calcula-
tions, we chosds = 0.3 eV independently of the photoacid
and the two solvents (methanol and water).

We found that the adiabacity parameter used for the actual

term at the crossing point between the reactant well and the Pest fit of the experimental resultgs: = g'zp, is smaller by

product well. The boundary condition at the crossing point is
given by

p

_ b
19 = o DS, (22)

about a factor of 24 from the calculated valu@cac (gt <
Ocalo)-

For a known activation energy, Kramers’ theory basically
has only two parametersyo and tp (or ts = 7p/b), that
determine the proton-transfer rate constant and its temperature
dependencewy is determined from the preexponential factor

The boundary condition (eq 22) we chose has components thatof the high-temperature limit of the rate constant. We also

are similar to those in the expression for the rate constant,

determine the activation energy of the process at the high-

expressed in a transition-state theory form (eq 12). The averagelemperature limit.

solvent velocity,S, is proportional to M, ¥ appears in both
expressions, ankh is a numerical factor that is independent of
temperature and determined by fitting the numerical solution

to the experimental proton-transfer rate constant at high tem-

Comparing the results of the fit with the experimental proton
transfer rate of both the weak and strong photoacids to water,
we find thatwo differs by a factor of 2. (See Table 1.) The
computed rate constant follows the temperature dependence of

peratures. Finally, the proton-transfer rate constant is obtainedket nicely. For the weak acidker also exhibits a large

from the slope of the plot of Ip) versus time.

temperature dependence at high temperatures (Figure 3c).
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Figure 3. Arrhenius plot of Inket versus 1T. The proton-transfer rate constant extracted from the experimental@gténé calculation based on
Kramers’ theory {-), and the calculation using the Landaziener curve-crossing formulation (- -) for (a) DCN2 to MeOH, (b) 2N68DS to water,
and (c) 2N to water.

The difference in the quality of the computed fits to the in the intermediate region. In this region, the transmission factor,
experimentalkpr, using the LandatuZener curve-crossing  PSY, is almost unity and has a very weak temperature depen-
formulation or Kramers’ theory, is not large, and one can use dence. As the temperature decreases, the friction increases and
either Computation method with almost identical results. The reaches the Strong_damping limit. The damp|ng Constﬁnt,
large difference between the two theories lies in their physical jncreases exponentially as the temperature decreases, and in the
origin and assumptions. The LZ transmission coefficient, strong-damping limit, the transmission factﬂgw, decreases

arlllses frotrrrll t[le quantllim nature of ;Ehetcurvg-crc;ssmg pIrObI_emlexponentiaIIy with the temperature. The proton-transfer rate
whereas the framers transSmission Iactor arises from a classical, , a1 i the strong-damping limit decreases exponentially

origin. According to our interpretation of the computational and follows the dielectric relaxation time.

results, using the LZ curve-crossing formulation to fit the ) i
Electron- and proton-transfer reactions in the condensed phase

experimental data okpr versus 1T, we find that at high ! ! 10
temperatures,z < 0.1 whereas at low temperatures ~ 1. are described in terms of the transition between two coupled

The actual rate constant is small at low temperatures even thougtfliabatic free-energy surfaces in the generalized solvent config-
the transmission coefficient is close to 1, and sif#&l2, the uration coordinate. The model consists of two coupled parabolic
root mean square of the solvent coordinate velocity decreasegdiabatic terms with frequenayo and coupling energy. The
exponentially with the temperature (eq 12) (singencreases interaction between the terms results in an avoided crossing such
exponentially with the decrease in temperature). In Kramers’ that the splitting between the two adiabatic potential surfaces
theory, at the high-temperature limit, the damping constant is is given by 2/. The dissipative medium is modeled by a thermal
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bath of harmonic oscillators coupled to the system. The strength
of the coupling to the bath is usually represented by a damping
parametery.

The influence of the upper adiabatic surface is the main result
of the LandawZener curve-crossing formalism. WhgW < 1
and the solvent motion is fast, the adiabacity paramgtisr
small @ < 1), the LZ transmission coefficielf; < 1, and
the rate is determined by the nonadiabatic limit given in eq 16.
Under certain conditions, the influence of the upper adiabatic

J. Phys. Chem. A, Vol. 107, No. 9, 2008439

cw_ 2t _ 21 4 \»
v W wo(”ﬁEs) (28)
cow Dot 4 \12
= rL(—nﬁES) (29)

rfW has a small temperature dependence and depends on the
diabatic potential surface frequeneys . This expression has a
similar small temperature dependence to that™f of the

surface can be neglected. This situation is realized when thelandau-Zener theory, which depends on the coupling matrix

splitting between the adiabatic surfaces is large compared with
the thermal energypV > 1). It can also be realized when the
splitting is small BV < 1) but the dissipation is strong enough
that the particle spends a long time in the crossing-point region
(solvent-controlled limit). The rate is determined in these cases
by the dynamics on the lower adiabatic potential surface.

We will show that using Kramers’ theory in the solvent-
controlled limit to describe the dynamics on the lower adiabatic

elementV. In contrast,rgw depends onr, which depends
strongly on the temperature a$® of the LandawZener
expression given in eq 26.

Equations 25, 26 and 28, 29 show why both methods of
calculating the temperature dependence of the proton-transfer
rate constant give similar results if one cannot differntiate
betweenV or wq.

In the high-temperature regime, the solvent response is fast

surface and neglecting the upper surface gives similar results(z. is small),zN > 7AP  and the overall rate constant of the
for the temperature dependence of the proton transfer rate ad.Z theory expression is determined by the nonadiabatic rate.

determined by the LandatZener curve-crossing theory.

To do so, we compare the results of the LandZaner
calculation with Kramers’ theory. As we found in the previous
sections, both calculations provide a good fit to the rate as a
function of temperature. Rips and Jorfifersed an interpolation
expression for the overall ET rate constant that bridges the two

In Kramers’ theory, at the high-temperature limit, is small
(the damping is relatively small), an§" is smaller tharrS",
hence the overall rate is determined 4§3/".

At a low enough temperature, the proton transfer rate is
determined in both LZ theory and Kramers’ theory by the
solvent relaxation sincg depends approximately exponentially

extreme cases, the nonadiabatic and the adiabatic ET. Theon the temperature and at a certain low enough temperature

expression is based on the mean first-passage time (eq 20).
k;tl =( NtA)71 + (i@tDYl = TgtA + TQtD (23)

We neglect the small difference in the activation energy of the
nonadiabatic and adiabatic rate expressions

= (" + %) expBAGY) (24)

where7”P and A are time constants equal to the inverse of
the prefactors of the rate-constant expression.

R [47EJ\12
"= 2n|V|2(TS) (25)
A0 = TL(%)W (26)

™A depends on the proton-tunneling coupling matrix element,
V, which is unknown and was estimated from the high-
temperature limit results and is given in Table 1. It is also

5™ > 7§W and AP > MA and hence the solvent motion
controls the rate of proton transfer.
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