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Previously, we measured the proton-transfer rate constant from strong photoacids to several solvents such as
alcohols and water as a function of temperature. We found an unusual temperature dependence: at high
temperature the rate constant is almost temperature independent whereas at low temperature the rate constant
exhibits a strong temperature dependence and follows the inverse of the dielectric relaxation time of the
particular solvent. We used the Landau-Zener curve-crossing formulation to calculate the proton-transfer
rate constant. We explained the temperature dependence as a continuous transition from nonadiabatic (high-
temperature) to solvent-controlled (low-temperature) limits. In this study, we used the classical Kramers’
theory in the medium and strong-damping limits to calculate the transmission coefficient and rate constant.
We found good correspondence between the experimental and calculated proton-transfer rate constant at all
temperatures using both models. In both models, the dynamical parameter used to calculate the temperature
dependence of the proton-transfer rate constant is the dielectric relaxation time of the particular solvent.

Introduction

In their excited state, photoacids are stronger acids than in
their ground state. The excitation of these compounds in a
solution of protic solvents enables the study of the dynamics
of the proton-transfer reaction from acids to the solvent.1-6

In previous papers,7-10 we described our experimental results
of an unusual temperature dependence of excited-state proton
transfer from a super photoacid (5,8-dicyano-2-naphthol, DCN2)
to several monols, diols, and a glycerol. At relatively high
temperatures, the rate of proton transfer is almost temperature-
independent whereas at relatively low temperatures the rate
exhibits great temperature dependence and the rate constant
value is similar to the inverse of the dielectric relaxation time.
We also measured the temperature dependence of the proton
transfer from two photoacids to water. We chose two photoacids
that differ in their acidity in the excited state, pK*, and proton-
transfer rate constants. The proton-transfer rate constant,kPT,
of the strong photoacid (2-naphthol-6,8-disulfonate, 2N68DS,
pK* ) 0.4) at room temperature is 2.3× 1010 s-1. Its
temperature dependence in water has similar behavior to that
found for DCN2 for several alcohols. At relatively high
temperatures, the rate of proton transfer is almost temperature-
independent whereas at relatively low temperatures the rate
exhibits great temperature dependence.kPT, at room temperature,
of the weak photoacid (2-naphthol, 2N, pK* ) 2.7) is only 2×
108 s-1. Its temperature dependence exhibits different behavior.
The activation energy of the proton-transfer process is about
12 kJ/mol at high temperatures. At low temperatures,T < 300
K, the activation energy increases and reaches∆Gq ) 20 kJ/
mol at 250 K.

In our earlier papers,7,8 we proposed a simple stepwise model
to describe and calculate the temperature dependence of the
proton transfer to the solvent. The model accounts for the large
difference in the temperature dependence and the proton-transfer

rate at high and low temperatures. In more recent papers, we
explained the temperature dependence of the rate constant for
proton transfer to the protic solvent as a continuous transition
from nonadiabatic (high-temperature) to solvent-controlled (low-
temperature) proton transfer. This phenomenon can be described
by the Landau-Zener curve-crossing equation11,12 for the
proton-transfer rate constant.

The development of the theory for the solution-phase proton-
transfer reaction is along the lines of electron-transfer theory.
It was initiated by Marcus13,14as well as Dogonadze, Kuznetzov,
Ulstrup, and co-workers15-19 and then extended by Borgis and
Hynes,20-22 Cukier,23,24 and Voth.25,26 These theories suggest
that, when a potential energy barrier is present in the proton-
reaction coordinate, the reaction pathway involves tunneling
through the barrier as opposed to passage over the barrier. The
proton transfer can be described as quantum tunneling between
two wells formed by two interacting electronic states. The
transfer of the proton, from one well to the other, is associated
with a change in the electronic state of the system. The crossover
between the electronic states can occur only when the proton
tunnels through the barrier.

Conventional Landau-Zener (LZ) theory11,12 provides an
accurate description of the process in the absence of interaction
with the environment. It is applicable if the motion, in the
vicinity of the crossing point, is nearly uniform (ballistic).27,28

The interaction of the particle with the environment causes
complications. The curve-crossing problem in the presence of
dissipation has been studied extensively.29-37 Expressions for
the transition rate of various physical limits have been derived.

When the coupling,V, between the diabatic terms is the
smallest parameter of the system, the dynamics in the crossing
region in this nonadiabatic limit is fast, the tunneling rate is
the rate-limiting step, and the reaction rate is given by the Fermi
golden rule expression.

When the coupling between the diabatic states is larger than
kBT, the adiabatic representation of the coupled potential energy
surfaces is adequate, the upper adiabatic potential surface plays
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a negligible role, and the rate expression is given by the standard
transition-state theory (TST) equation.

Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. The particle
spends a “long” time in the crossing-point region. The rate is
determined in both the adiabatic and solvent-controlled limits
by the dynamics on the lower adiabatic potential surface. The
formulation of the problem and the definition of the physical
regimes go back to Kramers’ theory. In the solvent-controlled
limit, the rate is inversely proportional to the solvent relaxation
time (friction) and is independent of the couplingV.

In this paper, we use two models to calculate the rate of
proton transfer as a function of temperature. We compare the
calculation results with the previously published experimental
data. The first model is based on classical Kramers’ theory38-40

and its strong relation to solvent friction. The second model is
based on the Landau-Zener curve-crossing formulation and was
successfully utilized previously to explain the experimental
results.

As we shall show, Kramers’ theory in the intermediate and
strong-damping limit can explain the unusual temperature
dependence of excited-state proton-transfer reactions. In the case
of the adiabatic or the solvent-controlled limits, the upper
adiabatic potential surface plays a negligible role and hence can
be treated by Kramers’ theory. In Kramers’ theory, the dissipa-
tive medium (the solvent) is modeled by a thermal bath of
harmonic oscillators bilinearly coupled to the system. The
strength of the coupling to the bath is usually represented by a
damping parameterγ that can be related to the dielectric
relaxation of the solvent.

Modeling

A. Classical Kramers’ Theory. The standard model for
studying reaction rates in solution and general radiationless
transitions consists of two crossing diabatic parabolic terms.
Radiationless transitions between the terms are induced by the
nonadiabatic couplingV. The environment is described in terms
of a bath of harmonic oscillators bilinearly coupled to the
reaction coordinate.41

The dynamics on the lower adiabatic surface is governed by
the Hamiltonian of a particle on a potential surface, coupled to
the bath, and can be equivalently described in terms of a
generalized Langevin equation (GLE):

U<(q) is the lower adiabatic potential surface, andq is the
system reaction coordinate. The Gaussian stochastic force,ê(t),
has a vanishing mean value and is related to the time-dependent
friction function, γ(t), via the fluctuation dissipation theorem:

with â ≡ 1/kBT.
In this paper, we follow the derivation of Rips and Pollak,36

Rips,37 and Starobinet et al.41 In the strong-damping limit, ohmic
dissipation holds and is characterized by the friction function

In this case,γ̂(s) ) γ is the damping constant (Markovian
process).

The reaction rate is determined by the thermally activated
classical escape rate of the particle from the reactant well to

the product well. In the classical limit, the escape process is
thermally activated, and the rate can be written as a product of
the Arrhenius factor and an attempt frequency,ωj :36

where P is the dissipative transmission factor,ω0 is the
characteristic frequency of the diabatic potentials, and∆Gq is
the activation energy. As previously mentioned, we shall limit
ourselves to the spatial diffusion limit (γ is independent of time).
The transmission factor in this case is determined by the
dynamics in the vicinity of the barrier top.

In the limit of small nonadiabatic coupling (âV , 1 ), the
lower adiabatic potential surface,U<(q), can be modeled as a
cusped double-well potential,Uc(q):

Calef and Wolynes31 (CW) suggested using for the transmis-
sion factor for the symmetric cusped double-well potential the
functional form appropriate for the parabolic barrier. The
effective barrier frequency,ωeff, is scaled by the reduced barrier
height: ωeff ) (πâ∆G*)1/2ω0 . Their expression has the form

where

and∆G* is the barrier height in the case of a symmetric cusped
double-well potential surface.

Rips and Pollak36 usedγ ) ω0
2τL, τL being the longitudinal

dielectric relaxation timeτL ) (ε∞/εS)τD. τD is the solvent
dielectric relaxation time, andε∞ andεS are the high- and low-
frequency dielectric constants, respectively.

In the weak-damping limit, this expression reduces to

The transmission factor is thus linear in the damping. In the
strong-damping limit, the CW expression reduces to Kramers’
exact result:

We found experimentally8,9 that the proton-transfer rate
constant from a photoacid to solvent at low temperatures scales
nicely with the dielectric relaxation time bykPT

-1 ) τD/b, where
b is an empirical factor determined by the fit of the experimental
data and was found to be in the range 4> b > 1 for various
alcohols and water. Thus, the solvent relaxation timeτS ) τD/b
appropriate for proton-transfer reaction isτL < τS < τD.

In this study, we used the following rate constant expression
to fit the experimental proton-transfer rate constant as a function
of temperature:

and

q̈ +
dU<(q)

dq
+ ∫t

dt′ γ(t - t′) q̆(t′) ) ê(t) (1)

〈ê(t)ê(t′)〉 g (1/â)γ(t - t′) (2)

γ(t) ) 2γδ(t) (3)

Γ ) ωj
2π

exp(-â∆Gq) )
ω0

2π
P exp(-â∆Gq) (4)

Uc(q) ) lim
Vf0

U<(q) ) 1
2

ω0
2(|q| - q0)

2 (5)

Pc
CW ) (2πσ)-1/2[(1 + 2πσ)1/2 - 1] (6)

σ ≡ 2â∆G*(ω0/γ)2 (7)

lim
σf∞

Pc
CW = 1 - (2πσ)-1/2 ) 1 - (4πâ∆G*)

-1/2(γ/ω0) (8)

lim
σf∞

Pc
CW = (πσ/2)1/2[1 - πσ/2] (9)

kPT ) kTSTPc
CW (10)

kTST )
ω′0
2π

e-∆Gq/RT (11)
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We obtainω′0 from the high-temperature fit of the experimen-
tal data to eq 11.

Figure 1a shows an Arrhenius plot of lnkPT versus 1/T of
the proton-transfer rate constant from DCN2 to methanol. The
slope at the high-temperature limit is small whereas at low
temperature the slope is greater. We also plot the inverse of the
solvent relaxation time,τS

-1, for methanol (solid line), which
scales with the dielectric relaxation time, to show the good match
of the proton-transfer rate constant at low temperatures with
τD

-1 . Figure 1b shows an Arrhenius plot of the proton-transfer
rate constant from 2N and 2N68DS to water. As can be seen,
for 2N the activation energy is also large at high temperatures.
The activation energy at temperatures close to the boiling point
of water is 12 kJ/mol, and at∼250 K (super-cooled water), it
is close to 20 kJ/mol.ω′0 is determined from the high-
temperature limit. For 2N68DS in water, we findω′0 = 1.8 ×
1011 s-1, for 2N in water,ω′0 ≈ 1 × 1011 s-1, and for DCN2 in
methanol,ω′0 ) 1.3 × 1011 s-1. The value of the rate constant

preexponential factor,ω′0, is relatively low compared to the
common values used in theoretical considerations and deriva-
tions. In his paper, Rips37 used the ultrafast inertial component
of the solvation time-correlation function. For water, he used
ω′0 = 4 × 1013 s-1, and for methanol,ω′0 = 1.5 × 1013 s-1.
The preexponential factors we find in our studies are closer to
the values ofτD at room temperature than to the ultrafast inertial
solvation component. The much smaller preexponential values
probably arise from the long-range solvent rearrangements
taking place in proton-transfer reactions. The reaction can be
described schematically:

The reactant is an intermolecular hydrogen-bonded complex
between the photoacid, AH*, and a solvent molecule, SB, that
serves as a base, characterized by a hydrogen bond to the
photoacid and other solvent molecules. It was found that this
hydrogen bond in protic solvents shifts the fluorescence band
of the photoacid to the red by about 1000 cm-1.42 In water,
this specific water molecule, SB, has three hydrogen bonds to
three water molecules. To form the product, A‚‚‚HSB

+, in
water, one hydrogen bond of SB to a water molecule must break.
Thus, relatively long-range reorganization of the hydrogen bond
network takes place upon proton transfer to the solvent. This
complex rearrangement, to accommodate the product, is prob-
ably the reason for a slow solvent-generalized configurational
motion that corresponds to a low-frequency component in the
solvent dielectric spectrum. Its time constant is close to the slow
component of the dielectric relaxation time. The activation
energy,∆Gq, is determined from the high-temperature limit of
the slope of the Arrhenius plot of the proton-transfer rate.∆Gq

at the high-temperature limit for DCN2 in methanol and ethanol,
as well as for other alcohols, is relatively low,∆Gq ) 2.5 kJ/
mol. Approximately similar values of∆Gq are also found for
2N68DS in water.

Figure 2a shows the fit of the experimental data, ln(kPT) versus
1/T (solid circles) for the proton-transfer rate constant from
DCN2 to methanol, with the calculated rate constant using eq
10. Pc

CW is given by eqs 6 and 7. Figure 2b shows the
experimental data and fit for 2N in water using the dielectric
relaxation data of water and the relatively larger activation
energy,∆Gq ) 12 kJ/mol, which we found for 2N in water.
Table 1 gives the relevant parameters of the calculation.

B. Landau-Zener Curve-Crossing Formulation. Borgis
and Hynes20-22 derived an expression for the proton-transfer
rate constant,k. They wrote an expression fork in a transition-
state theory form.k is expressed as the average one-way flux
along the solvent coordinate through the crossing pointSq of
the two free-energy surfaces, with the inclusion of a transmission
coefficient, κ, giving the probability of a successful curve

Figure 1. Arrhenius plot of lnkPT versus 1/T of the proton-transfer
rate constant (a) DCN2 in methanol (b) along withτS ) τD/b (s). (b)
2N (4) and 2N68DS (O) in water.

TABLE 1: Fitting Parameters for the Two Calculation
Models

ω′0
[s-1]a

V
[cm-1]b

∆Gq

[kJ/mol]c bd
τD

298K

[ps]e

DCN2/MeOH 1.3× 1011 2 2.5 2 50
2N/H2O 0.9× 1011 1 12 2 8
2N68DS/H2O 1.8× 1011 2 2.5 2 8

a ω′0 is calculated from the high-temperature limit of the experi-
mental rate constant,kPT, and eq 11.b Evaluated from the experimental
high-temperature rate constant.c Activation energy obtained by the best
fit to the experimental data.d Empirical factor used in the determination
of the proton-transfer rate.e Dielectric relaxation time at room tem-
perature.

A*H‚‚‚SB f A -*‚‚‚HSB
+
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crossing:

whereS is the generalized solvent coordinate,Ṡ, the solvent
velocity, and Θ(Ṡ), the step function. The brackets denote
averaging over the classical solvent distribution normalized by
the partition function of the solvent.

The general Landau-Zener (LZ) transmission coefficient,κ,
is given by

where

is the adiabacity parameter. The expression for the transmission

coefficient,κ, includes multiple passage effects on the transition
probability. V is the coupling matrix element between the
reactant and the product, and∆F is the slope difference of the
diabatic potentials of mean force at the crossing point,∆F )
kS, wherekS is the parabolic potential surface force constant.
Wheng , 1, one obtains the nonadiabatic limit result

leading to

in which ∆Gq is the Marcus activation free energy

The adiabacity parameterg (see eq 14) depends on the potential
surfaces’ curvature,∆F, the coupling,|V|2, and the velocity in
the vicinity of crossing,Ṡ. |V|2 is independent of temperature.
The solvent velocity,Ṡ, however, depends strongly on temper-
ature. In our previous papers, we suggested thatṠ is related to
the slow components of the solvent relaxation. On the basis of
the experimental data, we infer thatṠ ) b/τD, whereτD is the
solvent dielectric relaxation time andb is an empirical factor,
dependent on the specific protic solvent, and its value is between
1 and 4.

In the adiabatic limitV . kBT, κ ≈ 1, the adiabatic rate
expression is

whereωS is the solvent high frequency and∆GAD
q = ∆GNA

q -
V is the free energy of activation.

Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. In this
solvent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and independent of the coupling
V. Rips and Jortner35 derived an expression for the resonant
(∆Gq ) 0 ) electron-transfer rate in the solvent-controlled limit.

For the nonresonance cases, the prefactor in the rate expression
(eq 19) changes only by about 20%.

The preexponent depends on the solvent’s dynamical proper-
ties. At low temperatures, we found that the preexponential
factor in the solvent-controlled limit is related to the slowest
component of the dielectric relaxation time.We also found that
the temperature dependence of the proton transfer can be
explained as a continuous transition from the nonadiabatic limit
at high temperature to the solvent-controlled limit at low
temperature.

A number of attempts have been made to bridge these
physical limits. Zusman29 derived an expression for the rate,
bridging the nonadiabatic limit and the solvent-controlled limit.
Rips and Jortner have used a simple physical argument to obtain
a rate expression that bridges all three limits.33 They assumed
that the crossover could be described in terms of a single
dimensionless parameter, the ratio of the mean free path and
the root-mean-square displacement of the reaction coordinate.

In our previous papers,7-10 we used the mean first-passage
expression to fit the experimental results. This expression

Figure 2. Use of Kramer’s theory (s) to fit the experimental data,
(full circles) for the proton-transfer rate constant, of (a) DCN2 to
methanol and (b) 2N to water.

k ) 〈ṠΘ(Ṡ)δ(S- Sq)κ(Ṡ, Sq)〉R (12)

κ ) [1 - 1/2 exp(-g)]-1[1 - exp(-g)] (13)

g ) 2π|V|2
p∆FṠ

) 2π|V|2
pkSṠ

(14)

κ = 2g (15)

kNA ) 2π
p

|V|2( â
4πES

)1/2
exp(-â∆GNA

q ) (16)

∆GNA
q ) 1

4ES
(ES + ∆G)2 (17)

kAD ) (ωs/2π) exp(-â∆GAD
q ) (18)

kSC
ET ) 1

τL
(âES

16π)1/2

exp(-â∆GNA
q ) (19)
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bridges the nonadiabatic limit and the solvent-controlled limit:

wherekPT is the overall rate andkNA andkSC are given by eqs
16 and 19.

Numerical Calculation of the Proton-Transfer Rate. For
the numerical calculation of the proton-transfer rate constant
as a function of temperature, we previously used two crossing
parabolic potential surfaces representing the free energy of the
reactant and product along the solvent coordinate. The numerical
calculation is based on the diffusive propagation of the solvent-
generalized coordinate from the equilibrium position of the
reactant well to the crossing point. We solve the Debye-
Smoluchowski equation (DSE) for the specific problem. The
probability density function,p(S, t), to find a solvent configu-
rationSalong the generalized solvent coordinate at timet obeys
the DSE29,43,44

whereD is a diffusion constant andU(S) is the potential surface.
In our calculations, we usedES ) 0.3 eV for various

photoacids either in alcohols or water. The calculation’s initial
condition is a thermal equilibrium of the probability density
function,p(S), of the solvent coordinate of the reactant and is
given by a Gaussian distribution centered at the minimum of
the reactant well.

The diffusion constant,D, is related to the dielectric relaxation
time, τD, and the widths of the Gaussian initial distribution,43

D ) 〈S2〉/2τS, where〈S2〉 is the mean square displacement and
τS ) τD/b, whereb is an empirical factor. ForES ) 0.3 eV,
〈S2〉 = 0.16 at room temperature.

The activation energy,∆Gq, to cross between the reactant
well and the product well is determined from the experimental
activation energy measured at high temperatures (the nonadia-
batic limit). For 2N68DS in water and DCN2 in methanol, we
used∆Gq ≈ 2.5 kJ/mol. The position of the activation barrier
is determined by∆Gq ) U(Sq) andSq ) 0.21 . For the weak
photoacid 2-naphthol (2N), we used∆Gq ≈ 12 kJ/mol and
calculatedSq ) 0.37.

The next step in the calculation is based upon solving the
DSE of a single parabolic potential surface with the relevant
initial and boundary conditions. To solve it, we used a
modification of the user-friendly graphic program SSDP (version
2.61) of Krissinel and Agmon.45 The modification is based on
the Landau-Zener transmission coefficientκ (eq 13) in the sink
term at the crossing point between the reactant well and the
product well. The boundary condition at the crossing point is
given by

The boundary condition (eq 22) we chose has components that
are similar to those in the expression for the rate constant,
expressed in a transition-state theory form (eq 12). The average
solvent velocity,Ṡ, is proportional to 1/τD, κ appears in both
expressions, andk0 is a numerical factor that is independent of
temperature and determined by fitting the numerical solution
to the experimental proton-transfer rate constant at high tem-
peratures. Finally, the proton-transfer rate constant is obtained
from the slope of the plot of ln(p) versus time.

In Figure 3, we compare the fit to the experimental proton-
transfer rate constant,kPT, with the two methods of calculation.
The Landau-Zener calculation results were taken from our
previous studies.46,47 Figure 3a shows the Arrhenius plot of ln
kPT versus 1/T of DCN2 in methanol. We display the proton-
transfer rate constant extracted from the experimental data (dots),
the calculation based on Kramers’ theory (solid line), and the
calculation using the Landau-Zener curve-crossing formulation
(dashed line). Figure 3b shows the Arrhenius plot of the proton-
transfer rate constant of 2-naphthol-6,8-sulfonate to water. The
symbols of the experimental data and the two model calculations
are the same as in Figure 3a. Figure 3c shows the Arrhenius
plot of the experimental and calculatedkPT of 2N to water. As
seen in Figure 3, both methods of calculation yield a good fit
to the experimental results (lnkPT versus 1/T) of three
compounds in two different solvents, which differ in their
dielectric relaxation properties. The fitting parameters for both
calculation methods are given in Table 1.

Discussion

In this section, we compare the two methods used in this
paper to calculate the proton-transfer rate constant,kPT, as a
function of temperature. Experimentally, we found that the
proton transfer rate from strong photoacids to solvent exhibits
an unusual temperature dependence. At high temperatures,kPT

is almost temperature-independent whereas at low temperatures
it exhibits a strong temperature dependence. At the low-
temperature limit,kPT scales with the long component of the
dielectric relaxation time,τD, of the particular solvent.

Previously, we explained the temperature dependence ofkPT

as a continuous transition from the nonadiabatic limit (the high-
temperature limit) to the solvent-controlled limit (the low
temperature limit). We successfully used the Landau-Zener
(LZ) curve-crossing formulation to calculate the proton-transfer
rate constant at all temperatures.

Three parameters determine the LZ transmission coefficient,
κ, (eqs 13 and 14): the coupling matrix element,V, the curvature
difference of the diabatic potential surfaces at the crossing point,
∆F, and the solvent velocity at the crossing point,Ṡq. We used
Ṡq ) b/τD. From the preexponential factor at the high-
temperature limit, we determine the nonadiabatic coupling
matrix element (eq 16). For a symmetric reaction where∆Gq

) 0, ∆F can be calculated from the solvent reorganization
energy,∆F ) 2ES , but it is not easy to calculateES for proton-
transfer reactions. For the proton-transfer rate constant calcula-
tions, we choseES ) 0.3 eV independently of the photoacid
and the two solvents (methanol and water).

We found that the adiabacity parameter used for the actual
best fit of the experimental results,gfit ) g′τD, is smaller by
about a factor of 2-4 from the calculated value,gcalc (gfit <
gcalc).

For a known activation energy, Kramers’ theory basically
has only two parameters,ω0 and τD (or τS ) τD/b), that
determine the proton-transfer rate constant and its temperature
dependence.ω0 is determined from the preexponential factor
of the high-temperature limit of the rate constant. We also
determine the activation energy of the process at the high-
temperature limit.

Comparing the results of the fit with the experimental proton
transfer rate of both the weak and strong photoacids to water,
we find thatω0 differs by a factor of 2. (See Table 1.) The
computed rate constant follows the temperature dependence of
kPT nicely. For the weak acid,kPT also exhibits a large
temperature dependence at high temperatures (Figure 3c).

kPT(T) )
kNA(T)kSC(T)

kNA(T) + kSC(T)
(20)

∂p(S, t)
∂t

) D
∂

∂S
e-âU(S) ∂

∂S
eâU(S)p(S, t) (21)

∂p
∂S|S)Sq

) -k0κ
b
τD

p(Sq, t) (22)
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The difference in the quality of the computed fits to the
experimentalkPT, using the Landau-Zener curve-crossing
formulation or Kramers’ theory, is not large, and one can use
either computation method with almost identical results. The
large difference between the two theories lies in their physical
origin and assumptions. The LZ transmission coefficient,κ,
arises from the quantum nature of the curve-crossing problem
whereas the Kramers’ transmission factor arises from a classical
origin. According to our interpretation of the computational
results, using the LZ curve-crossing formulation to fit the
experimental data ofkPT versus 1/T, we find that at high
temperaturesκLZ < 0.1 whereas at low temperaturesκLZ ≈ 1.
The actual rate constant is small at low temperatures even though
the transmission coefficient is close to 1, and since〈Ṡ2〉1/2, the
root mean square of the solvent coordinate velocity decreases
exponentially with the temperature (eq 12) (sinceτD increases
exponentially with the decrease in temperature). In Kramers’
theory, at the high-temperature limit, the damping constant is

in the intermediate region. In this region, the transmission factor,
Pc

CW, is almost unity and has a very weak temperature depen-
dence. As the temperature decreases, the friction increases and
reaches the strong-damping limit. The damping constant,γ,
increases exponentially as the temperature decreases, and in the
strong-damping limit, the transmission factor,Pc

CW, decreases
exponentially with the temperature. The proton-transfer rate
constant in the strong-damping limit decreases exponentially
and follows the dielectric relaxation time.

Electron- and proton-transfer reactions in the condensed phase
are described in terms of the transition between two coupled
diabatic free-energy surfaces in the generalized solvent config-
uration coordinate. The model consists of two coupled parabolic
diabatic terms with frequencyω0 and coupling energyV. The
interaction between the terms results in an avoided crossing such
that the splitting between the two adiabatic potential surfaces
is given by 2V. The dissipative medium is modeled by a thermal

Figure 3. Arrhenius plot of lnkPT versus 1/T. The proton-transfer rate constant extracted from the experimental data (b), the calculation based on
Kramers’ theory (s), and the calculation using the Landau-Zener curve-crossing formulation (- -) for (a) DCN2 to MeOH, (b) 2N68DS to water,
and (c) 2N to water.
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bath of harmonic oscillators coupled to the system. The strength
of the coupling to the bath is usually represented by a damping
parameterγ.

The influence of the upper adiabatic surface is the main result
of the Landau-Zener curve-crossing formalism. WhenâV < 1
and the solvent motion is fast, the adiabacity parameterg is
small (g , 1), the LZ transmission coefficientkLZ , 1, and
the rate is determined by the nonadiabatic limit given in eq 16.
Under certain conditions, the influence of the upper adiabatic
surface can be neglected. This situation is realized when the
splitting between the adiabatic surfaces is large compared with
the thermal energy (âV > 1). It can also be realized when the
splitting is small (âV < 1 ) but the dissipation is strong enough
that the particle spends a long time in the crossing-point region
(solvent-controlled limit). The rate is determined in these cases
by the dynamics on the lower adiabatic potential surface.

We will show that using Kramers’ theory in the solvent-
controlled limit to describe the dynamics on the lower adiabatic
surface and neglecting the upper surface gives similar results
for the temperature dependence of the proton transfer rate as
determined by the Landau-Zener curve-crossing theory.

To do so, we compare the results of the Landau-Zener
calculation with Kramers’ theory. As we found in the previous
sections, both calculations provide a good fit to the rate as a
function of temperature. Rips and Jortner33 used an interpolation
expression for the overall ET rate constant that bridges the two
extreme cases, the nonadiabatic and the adiabatic ET. The
expression is based on the mean first-passage time (eq 20).

We neglect the small difference in the activation energy of the
nonadiabatic and adiabatic rate expressions

whereτAD andτNA are time constants equal to the inverse of
the prefactors of the rate-constant expression.

τNA depends on the proton-tunneling coupling matrix element,
V, which is unknown and was estimated from the high-
temperature limit results and is given in Table 1. It is also
dependent, to a lesser extent, on the solvent reorganization
energy,ES. τAD depends on the solvent longitudinal dielectric
relaxation time,τL, that depends exponentially on temperature.

The mean first-passage time expression can also be used to
present Kramers’ theory for arbitrary damping by an equation
that bridges between the strong-damping limit and the inter-
mediate-damping case

whereτ1
CW andτ2

CW are the intermediate- and strong-damping
limit time-constant expressions, respectively, for Kramers’ rate.
Using the Calef-Wolynes symmetric cusped double-well
potential rate expression,τ1

CW andτ2
CW are given by

τ1
CW has a small temperature dependence and depends on the

diabatic potential surface frequency,ω0 . This expression has a
similar small temperature dependence to that ofτNA of the
Landau-Zener theory, which depends on the coupling matrix
elementV. In contrast,τ2

CW depends onτL, which depends
strongly on the temperature asτAD of the Landau-Zener
expression given in eq 26.

Equations 25, 26 and 28, 29 show why both methods of
calculating the temperature dependence of the proton-transfer
rate constant give similar results if one cannot differntiate
betweenV or ω0.

In the high-temperature regime, the solvent response is fast
(τL is small),τNA > τAD, and the overall rate constant of the
LZ theory expression is determined by the nonadiabatic rate.
In Kramers’ theory, at the high-temperature limit,τL is small
(the damping is relatively small), andτ2

CW is smaller thanτ1
CW,

hence the overall rate is determined byτ1
CW.

At a low enough temperature, the proton transfer rate is
determined in both LZ theory and Kramers’ theory by the
solvent relaxation sinceτL depends approximately exponentially
on the temperature and at a certain low enough temperature
τ2

CW > τ1
CW and τAD > τNA and hence the solvent motion

controls the rate of proton transfer.
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